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Coupled Nonuniform Transmission
Line and Its Applications

SADAHIKO YAMAMOTO, STUDENT MEMBER, IEEE, TAKASHI AZAKAMI, MEMBER, IEEE,
AND KIYOYASU ITAKURA

Abstract—Theory and applications of coupled nonuniform transmis-
sion lines are described. Matrix representations of a general coupled non-
uniform transmission line are presented, by means of which the behavior
of any coupled nonuniform transmission line may be completely described.
Among a wide variety of applications of coupled nonuniform transmission
lines, two typical networks, one the coupled nonuniform transmission-
line folded all-pass network and the other the coupled nonuniform trans-
mission-line directional coupler, are treated in detail. Equivalent circuit
representations of these two networks are presented, which enable the
designer to synthesize them in a greatly simplified manner by making use
of the theories now available for more conventional single nonuniform
transmission lines. In addition, the properties of these two networks using
coupled exponential line are investigated. Design procedure is also given
for asymmetrical coupled exponential-line directional couplers having
excellent characteristics.

1. INTRODUCTION

HERE HAS BEEN a considerable amount of work
Treported in Kaufman [1] concerned with various types

of nonuniform transmission lines. However, the ma-
jority refers to the single nonuniform transmission line and
the available theory does not apply to coupled nonuniform
transmission lines. These may have a wide variety of applica-
tions in the field of distributed constant networks because of
the numerous advantages of the parallel coupling effect and,
in addition, may offer the possibility of the realization of a
class of ultra-broadband components from the nature of
nonuniformity. Therefore, it would be highly desirable to
investigate coupled nonuniform transmission lines as dis-
tributed network elements.

The work described in this paper is presented in the fol-
lowing manner: in Section II an improved method of
analysis of coupled nonuniform transmission lines is pre-
sented, which allows the four-port matrix parameters of such
coupled transmission lines to be obtained in a very concise
manner. Remarkably simple formulas for various four-port
matrix representations are derived. In Section III, among
numerous applications of coupled nonuniform transmission

Manuscript received July 25, 1966; revised September 15, 1966 and
November 17, 1966. This work was presented in part at the Group
Meeting on Radiation Science (Fukusha Kagaku Kenkyukai), Mitsu-
bishi Electric Corporation, Osaka, Japan, May 28, 1966.

S. Yamamoto and K. Itakura are with the Department of Electrical
Communication Engineering, School of Engineering, Osaka University,
Osaka, Japan.

T. Azakami is with the Division of Electrical Engineering, Nara
Technical College, Nara, Japan. He was formerly with the Department
of Electrical Communication Engineering, Osaka University.

lines, the folded all-pass network and the coupled nonuni-
form transmission-line directional coupler are treated in
detail. Theory of the preceding section is applied and the
equivalent circuit representations of these two networks are
presented, which may reduce the syntheses of these networks
to those of single nonuniform transmission lines. In Section
1V, the phase and delay characteristics of the coupled non-
uniform transmission-line folded all-pass networks, and the
coupling characteristics of the coupled nonuniform trans-
mission-line directional couplers are investigated, taking the
coupled exponential line as the network element.

II. MATRIX REPRESENTATIONS OF COUPLED NONUNIFORM
TRANSMISSION LINES

The coupled nonuniform transmission line to be con-
sidered in this paper is a symmetrical two-conductor line
with common return, in which the line parameters vary
along the longitudinal direction, that is, along the direction
of propagation of electromagnetic waves. A convenient way
to describe the behavior of such a coupled transmission line
is by means of the various matrix representations; i.e., im-
pedance matrix, admittance matrix, etc.,, which will be
derived in this section. One derivation method for the ma-
trix representation of coupled nonuniform transmission
lines utilizes coupled uniform transmission-line techniques.
For example, transfer matrix may be derived by:

1) Dividing the coupled nonuniform transmission line of
finite length into n elementary sections of identical
length Al

2) Multiplying the transfer matrices of n elementary sec-
tions, each of which is approximated by the coupled
uniform transmission line section.

3) Taking the limit for n— and A/—0, keeping the total
length constant.

This method, however, is tedious to apply and, furthermore,
the transformation from the transfer matrix to the other
matrix representations becomes intractable. Hence, this
paper employs an alternative method which seems to have
the advantage of greater simplicity.

Let us consider now the coupled nonuniform transmission-
line four-port composed of two conductors of identical
length /, having reflection symmetry to one another about a
longitudinal axis, as illustrated in Fig. 1. The derivation
method for the matrix representations adopted consists of
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the usual procedure of reducing the problem of a four-port
network to that of a two-port network by taking advantage
of the symmetry about the plane 7-7’. The behavior of
such a coupled nonuniform transmission-line four-port can
be completely described by superposition of the two funda-
mental modes, so-called even and odd modes [2], [3]. In
the even mode, for which the respective voltages and cur-
rents on the two conductors are equal and of the same sign,
the plane of symmetry may be replaced by a magnetic wall,
while in the odd mode, for which the respective voltages and
currents are equal but of opposite sign, this may be replaced
by an electric wall at zero potential. Throughout this paper,

v, At Ay A, — A,
Vol 1| As— A4, A+ 4,
Ll 2le -c ¢ +c,
I C.+0C € -0,

sub- or superscripts e and o refer to the even and odd modes,
respectively.

We shall first derive the impedance matrix, for which the
fundamental modes are excited by the sets of constant cur-
rent generators as shown in Fig. 2(a) for even mode and
2(b) for odd mode. Any port condition can be expressed as
a linear combination of these two modes of excitation. Let
the two-port impedance matrices of the even and odd mode
half sections of the complete four-port network in Fig. 1
be, writing even and odd mode cases together,!

o |zl Z12{3:|
Z{O e l: e e |» 1
[ ] Z 21{" Zzz{" W
where, from the reciprocity condition,
Z12{g = Z21{37 (2)

where the subscripts 1 and 2 denote Ends I and II, respec-
tively (see Fig. 1). By superposition, the impedance matrix
of the coupled nonuniform transmission-line four-port in
Fig. 1 is found to be

V Znw' + Zy Zn® — Zy
Vs B V| Zu — Zyw Zu 4 Zy°
Vs B 5 Zn® — Za® Zo® + Zot®
V4 Zo® - Za® Zyt® — Zyy®

On the other hand, if the fundamental modes are excited by
the constant voltage generators instead of current generators,
manipulation similar to the case of the impedance matrix
yields the admittance matrix as

Iy Yo+ Y Yo — Yire
I B Yo — Y Yo+ Yy
I, 2 Yot — YVorr Yo + YVos
I4J Yo + Yar* Yoo — Vo

3 Equation (1) indicates [Z°] and [Z°], simultaneously. Similar
representations will be often used in the latter part of this paper.
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where the two-port admittance matrices of the even and
odd mode half sections of the complete four-port network
in Fig. 1 are assumed such that

fe ¢
e Yt Y12{°
i =[% 2o%) ®
Yl Yl
where, from the reciprocity condition,
Ylg{g = Ygl{g. (6)

It may be more convenient in some cases to use the transfer
matrix which is derived in an analogous manner as

B.—B, B.4+ B[ Vs
B.+B, B.,— B, || Vs
De+ Do Do—D,| | =1, |’ @
D.— DD, + D, L—1I,

where the two-port transfer matrices of the even and odd
mode half sections are assumed such that

A, By,
[Pyl = [ o D{o} (®)

"

where, from the reciprocity condition,
A{g-D{g-—B{g-C{g=1. (9)

Equations (3), (4), and (7) are remarkably compact formulas
which indicate that the matrix representations of a sym-
metrical coupled nonuniform transmission-line four-port
may be readily derived if the two-port matrix parameters of
the even and odd mode half sections of the complete four-
port network are known. The method presented is directed
toward the derivation of the matrix representations of coupled
nonuniform transmission lines; however, (3), (4), and (7)
may be applicable to general symmetrical four-port networks
including not only distributed constant networks but also
lumped constant ones.

Zw® — Zs® Z®+ Z1s° I,

Zs® + Zhy® Zast — Zyy? . I, @)
Lot 4 Zos® Zoo® — Zo® | | I

Zing® — Zoy® Zgo® + Zp* | L4

Yie = Yir Y2 + Yo} [V

Vi 4+ Vit Vo — Yot - Vs ’ @
Yoo + YVio® Yoor — Yoot | | Vs

Yoo — Yoot Yoo o+ Yo'd LV,
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Fig. 1.

(a)

Fig. 2. Excitation of the fundamental modes by means of the constant current generators: (a) even mode, (b) odd mode.
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Coupled nonuniform transmission-line four-port.
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Fig. 3. Even and odd mode half-section single nonuniform transmission-line two-ports: (a) even mode, (b) odd mode.

It now remains to derive the two-port matrix representa-
tions of the two single nonuniform transmission lines shown
in Fig. 3(a) and 3(b), which correspond to the even and odd
mode half sections, respectively, of the coupled nonuniform
transmission-line four-port in Fig. 1. Assuming negligible
dissipation and TEM propagation for both even and odd
mode cases, the even and odd mode propagation constants
7{ ¢ identically reduce to

27

(s —JB~J—: (10)

where 8 is the phase constant and X is the wavelength. Then
the differential equations representing the line voltages v {x)

and the line currents iy (x) for the even and odd mode half-
o
section single nonuniform transmission lines are

d oy .
- {v{g(x)} F 8- Zoy() ife() = 0,

JB
Zo{g(x)

d
—{i@} + 11

dx s @ =0,

where Zo(x) and Zy(x) are, respectively, the even and odd

mode characteristic impedances of the half-section single
nonuniform transmission line, both being functions of the
position x along the line only. Further differentiation of (11)
yields the linear second-order differential equations for the
even and odd mode line voltages

2

d—x;{ {(x)} e {logZo{ (x)}

d
+m%@=m<m

which may be solved using standard techniques if Z, {g(x)

are known. Let p/x) and g.(x) represent a pair of linearly
independent solutions of (12) for even mode case, and,
similarly, let p,(x) and g,(x) denote a pair of linearly inde-
pendent solutions of (12) for odd mode case. The general
solutions of (12) are given by

v{g(x) = Cl{g'p{g(@ + 02{3'Q{g(x); (13)

where Cl{ . and Cg{e are constants, and the line currents are
o Q

ifs@) = W@ + Cope @], (14)

JB- Zo{e( ) [ {
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where the prime indicates differentiation with respect to x.
The use of (13) and (14) yields the two-port matrix repre-
sentations of the even and odd mode half sections of a
general coupled nonuniform transmission-line four-port in
Fig. 1, following the method of Dutta Roy [4],

o 8 [ml{fzo{g«)) ma{ffzo{ga)}

{ =
(2] Moo L7, +(0) meleZ, () (15)
{s & s
— st/ 20140 /74100
{g _ 1 ms°/ O{g() ms\°/ o{g()
[Y ] jﬁ-me{gl: m4{g/Zo{3(l) —ml{g/ZO{g(l):I, (16)

1 gt —jg-mst-7Z, 0
- T e e ° ’ 17
° m4{3 [mz{a/jﬁ'zo{g(o) ms{”'Zofl%(l)/Zoll%(O):] 4D

where the m’s are

b = =70 0 (O) = o D1 O
mols = p OO — {0
malé = 1/15(0)-q ,0) — ¢ (0P (0)
m,fs = P04 (0 — ¢ @ P O
msls = p 609 (0 — 40P 1,
malf = p 100 O — 1 (0P O (18)

Also, from the nature of the linear second-order differential
equation, we get the following relationship:

P'{s@) - qfs@) — ¢ [s=2)-ps(@)

19
Zo{g(x) (19

= constant.

Then it is easily proved that (15), (16), and (17) always satisfy
the corresponding reciprocity conditions; i.e., (2), (6), and
.

Substitution of (15), (16), and (17) in (3), (4), and (7),
respectively, yields the impedance, admittance, and transfer
matrices of a general coupled nonuniform transmission-line
four-port. No preferred matrix representation exists. The
matrix representation that is most convenient depends upon
the network configuration to be analyzed. It now remains
only whether or not (12) is solvable for the given types of
variation of the even and odd mode characteristic imped-
ances. Equation (12) is the linear second-order differential
equation for single nonuniform transmission lines which, so
far, have been investigated by a number of workers in the
field [1], [4]-[8]. For the given even and odd mode char-
acteristic impedance functions, the four-port matrix param-
eters of coupled nonuniform transmission lines can be
determined either by direct substitution in (3), (4), and (7),
if the two-port matrix parameters of the even and odd mode
half-section single nonuniform transmission lines are known,
or by the use of (3), (4), and (7) together with (15)-(17), if
the solutions of (12) are available.

Although the general solutions of (12) for completely
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arbitrary Z,(x) and Zy(x) have never been accomplished,
all the existing solutions for single nonuniform transmission
lines are applicable to coupled nonuniform transmission
lines. In particular, two methods recently proposed are of
importance. One proposed by Berger [9] is a simple gen-
eralizing method which enables one to obtain the solutions
for single nonuniform transmission lines of various shapes
by utilizing those for the previously solved single nonuni-
form transmission lines. The other method described by
Protonotarios and Wing [10], although an approximate one,
is applicable to arbitrarily nonuniform transmission lines
and is extremely valuable in the case where the closed form
solutions are not possible or cannot be found easily.2 Thus
we conclude that it is possible to form a coupled nonuniform
transmission line having two single nonuniform transmission
lines, for which the solutions of (12) are known, as the even
and odd mode half sections. It should be noted, however,
that, for the coupled two-conductor line with common re-
turn under consideration, physical realizability requires that

Zow(@) 2 Zo(@) 0=z =D). (20)

In the selection of the characteristic impedance functions,
(20) must be considered.

I1I. ApPLICATIONS OF COUPLED NONUNIFORM
TRANSMISSION LINES

There are a number of papers dealing with single nonuni-
form transmission lines. To date, however, application of
this type of transmission line has been limited, from its
nature, to a few classes of circuit components such as im-
pedance transformers, resonators, etc. In comparison with
such single nonuniform transmission lines, coupled non-
uniform transmission lines may have a wide variety of ap-
plications in UHF and microwave regions. For example,
when the pertinent port conditions are applied to the coupled
nonuniform transmission-line four-port, the resultant two-
port networks as in Fig. 4 may be used as distributed con-
stant filters which may have sharper cutoff and greatly ex-
tended rejection bandwidth than are obtainable with uniform
transmission lines, and it is possible to analyze their trans-
mission properties by the use of the matrix representations
presented in Section II, if the functional forms of the even
and odd mode characteristic impedances are given.

In this section, however, two other networks will be
treated in detail. These are the coupled nonuniform trans-
mission-line folded all-pass network and the coupled non-
uniform transmission-line directional coupler, both of which
possess peculiar characteristics not attainable by conven-
tional single nonuniform transmission lines. Throughout the
latter discussion, we treat such a coupled nonuniform trans-
mission line that satisfies the following condition:

ZOe(x)'ZOO(x’) = 1’ (21)

2 This method is directed toward single nonuniform RC transmis-
sion lines; however, it can be easily exiended to the case of lossless
single nonumform transmission lines.
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Fig. 4. Coupled nonuniform transmission-line filters.

where zo/(x) and z.(x) are, respectively, the even and odd
mode characteristic impedances normalized to the terminat-
ing impedances. As will be shown later, under this condition,
the coupled nonuniform transmission-line folded network
becomes an all-pass network and the coupled nonuniform
transmission-line four-port terminated by unit impedances
behaves as a directional coupler with perfect input match
and infinite directivity at all frequencies.

It can be easily proved that, under the condition (21), the
even and odd mode half sections, shown in Fig. 3(a) and
3(b), respectively, of a coupled nonuniform transmission-line
four-port are mutually dual; that is,

Ae = Do; Be = Co; Ce = Bo; De = Ao,

where A{e, Bfe, C{¢, and D{e are the two-port transfer
matrix parameters of the even and odd mode half section
single nonuniform transmission lines.

(22)

A. Coupled Nonuniform Transmission-Line Folded All-Pass
Network

The coupled nonuniform transmission-line folded network
to be analyzed herein is the two-port network shown in Fig.
5, in which two ports at one end of the coupled nonuniform
transmission-line four-port are interconnected [2], [11];
ideally this connection should be of zero length. The folded
network using a coupled uniform transmission line is known
as the microwave C-section [12], [13]. We shall now investi-
gate the frequency behavior of the coupled nonuniform
transmission-line folded network under the condition (21).
If the even mode signals (44, +3) are applied at Ports 1
and 2, respectively, the plane of symmetry may be replaced
by a magnetic wall. Likewise, if the odd mode signals
(+3%, —3%) are applied at Ports 1 and 2, the plane of sym-
metry may be replaced by an electric wall. In each case, the
problem reduces to that of a one-port network, and the
sum of these two cases is a single signal of unit amplitude in
Port 1. The resultant signals out of Ports 1 and 2 are

Ar = (Toe + To)/2
Az = (To. — T0)/2,

where T'y, and Ty, are the reflection coefficients for the even
and odd mode half-section single nonuniform transmission-
line one-ports, respectively. These are related to the open-
circuit impedance z,, and short-circuit impedance z, of
half the folded network by

(23)
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Fig. 5. Coupled nonuniform transmission-line folded network.

2p— 1 (A,/C) — 1

T s T T ey 1
ol By -1
znt+ 1 (Bo/Do) + 1
Substitution of (22) into (24) yields
Toe = — oo (25)
Then we get from (23) and (25)
A1 =0
Ay = Tq. (26)

Thus, it is found that the coupled nonuniform transmission-
line folded network in Fig. 5 behaves as an all-pass network
under the condition (21), and the phase shift ¢ through this
all-pass two-port network, after manipulation, is expressed as

¢ = cos~! [Re(Tq,)]
—1 M2°

—2-tan—1[T- :l,
Vp0)-8 my°

where m,* and m,® are given by (18) and p(0) is the ratio of
the even to odd mode characteristic impedance at x=0.
That is,

@7)

p(0) = 20.(0)/205(0).
It should be noted that, from the realizability condition (20),
p(0) = 1, (29)

(28)

or generally
p(x) = 20()/200(x) = 1

Equation (26) offers the equivalence of the coupled nonuni-
form transmission-line folded all-pass network and the
single nonuniform transmission-line resonator of character-
istic impedance zo(x) with the far end open circuited; that
is, the reflected wave of the open-circuited single nonuniform
transmission-line resonator corresponds to the transmitted
wave of the folded all-pass network (see Fig. 6). Making use
of this equivalence allows coupled nonuniform transmission-
line folded all-pass networks to be synthesized by means of
the methods now available for single nonuniform transmis-
sion-line resonators [14]-[16]. Thus, the problem of a
coupled transmission line reduces to that of a single trans-
mission line.

As long as we treat single nonuniform transmission lines,
all-pass properties cannot be realized; however, this can be

0=<=z<=1I. (30)
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(a)
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Zoe ()
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10 o X

(b)

Fig. 6. Equivalence of a coupled nonuniform transmission-line
folded all-pass network and a open-circuited single nonuniform
transmission-line resonator (¢: phase shift).

done by the use of coupled nonuniform transmission lines
as described before. In particular, the folded network treated
in this section not only is an all-pass network but also
possesses such a peculiar phase or delay characteristic that
may be considered useful in many UHF and microwave
systems that require phase shaping or delay equalization.
Of course, the synthesis of coupled nonuniform transmis-
sion-line folded networks is complicated compared with the
case of coupled uniform transmission lines. However,
Youla’s synthesis method [16] for arbitrarily terminated
single nonuniform transmission lines is directly applicable
because of the analytical equivalence shown in Fig. 6, and
the peculiar properties not attainable by the stepped design
using conventional coupled uniform transmission lines may
be realized from its nonuniformity. The practical advantage
gained by the use of nonuniform transmission-line folded
networks is that the discontinuity effect of the physical
junctions between adjacent coupling sections is eliminated.
Coupled nonuniform transmission-line folded networks will
be compared with coupled uniform transmission-line folded
networks in Section 1V,

B. Coupled Nonuniform Transmission-Line
Directional Couplers

Consider the coupled nonuniform transmission-line four-
port terminated by unit impedances at every port as shown
in Fig. 7. Its behavior may be analyzed by the method of
Reed and Wheeler [3]. When two signals of half amplitude
and in-phase are applied at Ports 1 and 2, the plane of
symmetry may be replaced by a magnetic wall, i.e., even
mode case. Similarly, when two signals of half amplitude
and out-of-phase are applied at Ports 1 and 2, the plane of
symmetry may be replaced by an electric wall, i.e., odd mode

My — §8-mezoo(l) — m2*/38"20:(0) — M- 20s(1) /20e(0)
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o]
T

Fig. 7. Coupled nonuniform transmission-line directional coupler.

case. In each case, the problem reduces to that of a two-
port network, and the sum of these two cases is a single
signal of unit amplitude applied to Port 1. The amplitude
and phase of the signals emerging from the four ports are
given by

Ay = (T4 T0)/2
Az = (Pe - Fo)/z
Ay =(T.— T.)/2
Ay=(T.+ T)/2, 1)

where T', and T, are the reflected waves, and T, and T, are
the transmitted waves, for the even and odd mode half
section single nonuniform transmission-line two-port net-
works, respectively. These reflected and transmitted waves
can be related to the two-port transfer matrix parameters of
the even and odd mode half sections of the coupled nonuni-
form transmission-line four-port by

A e B e — C e — D e

— [\0 + Il() I\D {D

® A+ B+ Cu+ Dy,

ErBET YT

2

X

o ' (82
pr Bt Cpt g

Noting that from (22) and (32),

I'e=-—1T,

T, =T, (33)
we find

A, =0

A, =T,

A; =0

Ay =T, (34)

Equation (34) shows that, under the condition (21), the
coupled nonuniform transmission-line four-port terminated
by unit impedances behaves as a directional coupler perfectly
matched and isolated at all frequencies and, in addition, if
the functional forms of the even and odd mode characteristic
impedances are given, the coupling to Port 2 may be found
from the following equation

(35)

Ay =

me — j8-mezaoll) -+ ma?/jB-20e(0) + Mmst20e(l) /206(0) ’
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where the m’s are given by (18). Equation (34) also offers
the equivalence [17] (see Fig. 8) of the coupled nonuniform
transmission-line directional coupler and the single nonuni-
form transmission-line section of characteristic impedance
Zofx). That is, the reflected wave of the single nonuniform
transmission line corresponds to the backward-coupled wave
of the directional coupler, and the transmitted wave of the
single nonuniform transmission line corresponds to the
forward-coupled wave of the directional coupler. The use of
this equivalence reduces the synthesis of coupled nonuniform
transmission-line directional couplers to that of single non-
uniform transmission lines. Let us now consider this prob-
lem briefly. The coupling to Port 2 of the asymmetrical
n-section coupled uniform transmission-line directional cou-
pler having Chebyshev response is [18],

l l
—h2-T,2 (cosf—/cos EO—)
n n

A 2unim’m: b 36
| As|%unis p Bl (36)
1+e2—h2-T,? <cos—/cos —)

n )

where T, is the Chebyshev polynomial of the first kind of
degree n, c, and & are constants, 8, is the phase constant at
the lower equal-ripple band-edge frequency, and [ is the
total length of the coupler. Allowing the number of sections
to increase indefinitely for a fixed overall length, the asym-
metrical coupled nonuniform transmission-line Chebyshev
coupler results, for which the coupling is

— h2-cos? (VB2 — Bod)

I A, lznonuniform = (37)
1+ ¢ — h2-cos? (Iv/B® — Bod) [302)

since [19],

lim T

n— o

n(cosﬁ/cos —ﬂg—()l—) = cos (Iv/B2 — Bod), (38)
n n
which is the limiting form of the Chebyshev polynomial as
its degree increases without limit. Thus, the synthesis of the
coupled nonuniform transmission-line Chebyshev coupler
reduces to that of the single nonuniform transmission-line
section having reflection characteristic given by (37). For
loose couplers, synthesis may be performed by the usual
Fourier transform method for tapered impedance matching
sections [19]-[21]; however, for tight couplers, this method
is not directly applicable, and the higher-order theory [16],
[22] must be used.

If we select a variation of the even and odd mode char-
acteristic impedances of the types

20{3(-’5) = ZO{S(Z — ), (39)
then a symmetrical coupled nonuniform transmission-line
directional coupler [23] can be obtained, for which the phase
difference between the two outputs at Ports 2 and 4 is 90-
degrees at all frequencies.? It is this property that makes

3 Although the details of the synthesis procedure have not yet been
presented, such symmetrical nonuniform transmission-line couplers
have recently been treated by Tresselt [23].
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Zoe (v

. Zoo (=1

Fig. 8. Equivalence of a coupled nonuniform transmission-line direc-
tional coupler and a single nonuniform transmission line.

symmetrical couplers [24], [25] of importance.

Comparing with familiar multi-section coupled uniform
transmission-line couplers, both symmetrical and asym-
metrical coupled nonuniform transmission-line couplers
possess no discontinuity in the coupling region, and there-
fore should be capable of providing higher isolation and
better input match. Furthermore, they offer the possibility
of the realization of ultra-broadband couplers because of
their nonuniformities. If there need not be any particular
phase relationship between -the outputs, asymmetrical
couplers seem to be superior to symmetrical ones since the
former offers the smaller size. However, as in the case of
asymmetrical uniform transmission-line couplers [18], a
major practical disadvantage of symmetrical nonuniform
transmission-line couplers is the presence of the abrupt dis-
continuity at one of the two ends, which may cause con-
siderable degradation of performance.

IV. CoupPLED EXPONENTIAL LINE

In Sections II and III, we have considered the general
coupled nonuniform transmission line, not assuming any
specific type of variation of the characteristic impedances.
For the purpose of illustration, let us now investigate the
properties of the coupled nonuniform transmission-line
networks, treated in the previous section, using the coupled
exponential line as the network element, of which even and
odd mode characteristic impedances (normalized) vary ex-
ponentially along the longitudinal direction; that is,

20:(%) = Zoeo*€Xp (ux)

20,{(Z) = 2000+ €xp (— px) O=z=), (40)

are the even and odd mode characteristic im-

pedance levels of the line at x=0, and, from the condition
(21), are related by

where Zy{e

(41)

The rate of taper p in (40) may be positive or negative; how-

2060° 2000 = 1.
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P (0)

e

Fig. 9. Limitation on parameters, p(0) and g/, for the coupled
exponential line defined by (40) and (41).

ever, it is necessary, so as to satisfy the realizability condition
(20), to choose the parameters u and p (0)(=2z0.(0)/z0,(0)) so
that

p(0) =1
p(0) = exp (—2ul)

k=0

(v < 0). 42)
The shaded region in Fig. 9 represents the range of the
parameters for which the coupled exponential line is realized.

For convenience of later discussion, the two-port transfer
matrix parameters of the even and odd mode half sections
of the coupled exponential line defined by (40) and (41) will
now be derived.
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Fig. 10. Phase characteristics of the coupled exponential-
line folded all-pass networks.

A. Coupled Exponential-Line Folded All-Pass Networks

The phase shift ¢ through the coupled exponential line
folded all-pass network as in Fig. 5 is

¢ = 2-tan~! [ (45)

o))
V() (p + g-cot ®) I

Curves are plotted in Fig. 10, showing & against 8/. Inspec-
tion of Fig. 10 shows that this network possesses peculiar
phase characteristics. Also, in Fig. 10, the ¢—p/ curves with
u=0, in fact, correspond to those of coupled uniform
transmission-line folded all-pass networks. It should be
noted that, as the rate of taper u increases from the negative
value through zero to the positive one, the ¢—gI curve for
the coupled exponential-line folded all-pass network is
shifted from the left to the right for a constant length of the
line, and the variation in maximum slope of the ¢—g/ curve
is accomplished by varying p(0), i.e., the ratio of even to odd
mode characteristic impedance at x=0. This is the property
that makes coupled exponential-line (or generally coupled
nonuniform transmission line) folded networks so interest-
ing and useful. This shifting property cannot be obtained by
using coupled uniform line folded networks for constant
length of the line, since the ¢—pgI curves for p=0 in Fig. 10
pass through the point (3/=w/2, ¢=m=) independent of p(0).
In order to shift the ¢— B! curves with uniform transmission
lines, cascaded folded networks [13] must be employed.
However, this means the degradation of performance be-
cause of its junction effect and furthermore the size of the
whole network becomes larger.

Next we shall consider the delay characteristics of
coupled exponential-line folded all-pass networks. The delay
versus frequency function is by definition,
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Fig. 11. Delay characteristics of the coupled exponential-

line folded all-pass networks (u/=1.5).

de

= ’
dw

T (46)
where w is the angular frequency. Let the normalized delay
function 7* be defined as

(47)

Here 7, is the delay produced when TEM wave propagates
along a single uniform transmission line of length 2/ (twice
the length of the folded network), and is given by

21

T = —
v

(48)

where v is the velocity of propagation of TEM wave. Then
we get from (45)—(48)

. L d¢
21 dg
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Delay characteristics of the coupled exponential-line folded
all-pass networks are illustrated in Fig. 11 for u/=1.5, where
the dotted line shows (48); that is, delay obtained by the
single uniform transmission line of length 2/ Inspection of
Fig. 11 shows that, by using the folded network, larger delay
can be obtained at the frequencies near the peak position
than is obtainable with the single uniform delay line of the
same overall length. Variation in peak height is accomplished
by varying p(0), and variation in peak position by varying
the rate of taper. Therefore, if the proper selection of the

= /p(0) (49)
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Fig. 12. Cascaded two-section coupled uniform trans-
mission-line folded all-pass network.

functional forms of the characteristic impedances and the
parameters is made, folded all-pass networks may be used
as delay equalizers for various applications, e.g., for use in
wideband PCM transmission [26]. The main advantage
gained by the use of the folded equalizers is that there is no
need of a circulator which is necessary in order to separate
the input and output waves for the usual reflection type
delay equalizers.*

If we connect in tandem folded networks with the same
peak height but slightly different peak positions, then it is
possible to obtain an approximately flat delay response,
and the overall network may be used as a constant delay
network. In comparison with the usual single uniform delay
line, the folded delay network becomes extremely compact
because of the folding process and larger delay near the peak
position.

Taking the coupled exponential line as representative of
coupled nonuniform transmission lines, let us now compare
coupled nonuniform transmission-line folded networks with
uniform ones. For the coupled uniform transmission-line
folded network, the peak position of the delay character-
istic is fixed at 8/=/2, since its one parameter p (the ratio
of even to odd mode characteristic impedance) permits only
the variation in peak height; the coupled exponential-line
folded network, on the other hand, permits the variation
in both peak position and peak height because of its two
parameters p and p(0). As a particularly simple example,
consider the design of the delay network having maximum
delay at f=1000 MHz (A= 30 cm). If we use a coupled uni-
form transmission-line folded network, the required length
is 7.5 cm. On the other hand, if we choose the coupled ex-
ponential-line folded network with negative u,5 having peak
position at, for example, p/=%2r, the required length is 5.6
cm. Thus, a reduction in length is realized. With uniform
transmission lines, variation in both peak height and peak
position is accomplished if we employ the cascaded two-
section folded network having two parameters as in Fig. 12

¢ Tt is interesting to note the relation of the reflection type equalizer
to the single transmission-line equivalent network of the folded
equalizer shown in Fig. 6(b). In the design of the folded equalizer, syn-
thesis may be performed by the method for the reflection type equal-
izers, but it is realized in the form of a folded network which enables the
designer to avoid the use of a circulator.

8 Since the (group) delay is proportional to the slope of the ¢ —g/
curve from its definition, it is seen from Fig. 10 that the coupled expo-
nential-line folded network with positive 4 produces maximum delay
at Bi(>=/2), whereas that with negative ¢ produces maximum delay at
B <= /2).
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(see Steenaart [26], Fig. 5). However, as previously described,
the discontinuity effect may degrade the performance and
the size becomes larger. Of course, generally speaking, the
previous discussion seems insufficient to be conclusive since
only the coupled exponential line is treated in this paper;
however, even from such a simple example, it is seen that
the coupled nonuniform transmission-line folded networks
are worthy of mention.

B. Coupled Exponential-Line Directional Couplers

Coupling to Port 2 of the asymmetrical coupled ex-
ponential-line directional coupler, as shown in Fig. 7, is
derived from (32), (34), and (43) as

Lol ul .
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coupled uniform transmission-line couplers, asymmetrical
coupled exponential-line couplers possess the Aigh-pass char-
acteristics. Thus, the spurious response unavoidable with
cascaded uniform transmission-line couplers is eliminated.
The steps required to design the asymmetrical coupled
exponential-line couplers may be summarized as follows:

1) From the desired value of mean coupling, C(dB), ob-
tain u/ by the use of (54).

2) Using Fig. 13, determine the total length of the direc-
tional coupler from the values of the allowable coupling
deviation and the required lower band-edge frequency.

3) Find the rate of taper p.

Vi)

, (50)
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where k(1/2) is the coupling factor at x=//2 and is defined by
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Let us now consider the special case where k(0)=0, for
which (50) reduces to
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As the frequency tends to infinity, the amplitude of A, ap-
proaches constant. This asymptotic value corresponds to the
mean coupling, C (dB), of the asymmetrical coupled ex-
ponential-line directional coupler; that is,
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Curves are plotted in Fig. 13, showing coupling character-
istics for several mean coupling values. It can be seen that,
in comparison with the bandpass characteristics of the usual
symmetrical [24], [25] or asymmetrical [18] multi-section

2 I\?
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1t should be noted that the high-pass characteristic of the
asymmetrical coupled exponential-line directional couplers
is based on the end condition k(0)=0. As long as conventional
coupled line configurations are employed, it is impossible to
realize this condition which means that the coupled lines
must be infinitely far apart. However, the use of the slit-
coupled configurations shown in Fig. 14 allows this condi-
tion to be realized with reasonable coupled line spacing, for
which exact design equations have been given by the present
authors.® By varying the slit width, both configurations in
Fig. 14 permit smooth variation in coupling with constant
strip spacing and thus these are the suitable configurations
for coupled nonuniform transmission lines. In the uniform
or nonuniform transmission-line directional couplers using
slit-coupled configurations, in order to avoid undesirable
coupling, the slit width is set equal to zero in the terminating
region. Therefore, it is found that the end condition k(0)=0
for the asymmetrical coupled exponential-line directional
couplers can be ecasily realized by using the slit-coupled
configurations.” In other words, this condition would tend
to permit the smooth transition from the terminating region
to the coupling region.

Theoretically, asymmetrical coupled exponential-line
directional couplers possess excellent characteristics; how-
ever, as previously described, a practical disadvantage of
such couplers is the presence of the abrupt discontinuity at
one end, as in the case of asymmetrical multi-section coupled

6 S. Yamamoto, T. Azakami, and K. Itakura, “Slit-coupled strip
transmission lines,” IEEE Trans. on Microwave Theory and Techniques,
vol. MTT-14, pp. 542-553, November 1966.

7 It should be also emphasized that the slit-coupled configurations
are available for the realization of the folded networks having decreas-
ing p(x) with increasing x (for example, coupled exponential line with
negative u), since they permit the variation in coupling with constant
coupled line spacing, for which conventional coupled line configura-
tions are not suitable.
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Fig. 13.
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Fig. 14. Cross-sectional views of the slit-coupled strip-line
configurations: (a) parallel case, (b) perpendicular case.

Coupling characteristics of the asymmetrical coupled exponential-line directional couplers (k(0)=0).
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Fig. 15. Two-section symmetrical coupled nonuniform
transmission-line directional coupler.
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Fig. 16, Coupling characteristic of the two-section symmetrical
coupled exponential-line directional coupler (k&(0)=0, u/=1.5).

uniform transmission-line couplers [18]. The use of sym-
metrical couplers such as those described by Tresselt [23]
allows such a discontinuity to be avoided, since the strongest
coupling region is in the center and not at one end; how-
ever, a high-pass characteristic is then not attainable. If we
connect two identical asymmetrical coupled exponential-line
couplers in cascade as in Fig. 15, the symmetrical coupler
results; however, calculation shows that such a simple
symmetrical coupler possesses poor bandpass characteristic
not sufficient for most applications (see Fig. 16). Therefore
we find that, in order to obtain the characteristic impedance

functions giving broadband symmetrical coupled nonuni-
form transmission-line directional couplers, synthesis must
be performed as was done by Tresselt.

V. CONCLUSIONS

Coupled nonuniform transmission lines have been shown
to be useful distributed network elements. We have seen
that it is possible to describe the behavior of coupled non-
uniform transmission lines in a very concise and compact
way so that matrix parameters may be derived by solving
linear second-order differential equations for more conven-
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tional single nonuniform transmission lines. Various matrix
representations of a general coupled nonuniform transmis-
sion line have been presented, each of which may serve as
a basis for the analysis and design of coupled nonuniform
transmission-line networks. As specific applications, the
coupled nonuniform transmission-line folded all-pass net-
works and the coupled nonuniform transmission-line direc-
tional couplers have been treated in detail, and useful
equivalences have been presented, which allow the syntheses
of these networks to be performed by using single nonuni-
form transmission-line techniques. In addition, the proper-
ties of these two networks using the coupled exponential line
have been investigated.
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