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Coupled Nonuniform Transmission

Line and Its Applications

SADAHIKO YAMAMOTO, STUDENT MEMBER, IEEE, TAKASH1 AZAI<AMI, MEMBER, IEEE,

AND KIYOYASU lTAKURA

Absfract—Theory and applications of coupled nonuniform transmis-

sion lines are described. Matrix representations of a general coupled non-

uniform transmission line are presented, by means of which the behavior

of any coupled nonuniform transmission line maybe completely described.

Among a wide variety of applications of coupled nonuniform transmission

lines, two typical networks, one the coupled nonuniform transrnission-

line folded all-pass network and the other the coupled nonuniform trans-

mission-line directional coupler, are treated in detail. Equivalent circnit

representatious of these two networks are presented, which enable the

designer to synthesize them in a greatly simplified manner by making use

of tbe theories now available for more conventional single nonuniform

transmission lines. In addition, the properties of these two networks using

coupled exponential line are investigated. Design procedure is also given

for asymmetrical coupled exponential-line directionrd couplers having

excellent characteristics.

I. INTRODUCTION

T
HERE HAS BEEN a considerable amount of work

reported in Kaufman [1] concerned with various types

of nonuniform transmission lines. However, the ma-

jority refers to the single nonuniform transmission line and

the available theory does not apply to coupled nonuniform

transmission lines. These may have a wide variety of applica-

tions in the field of distributed constant networks because of

the numerous advantages of the parallel coupling effect and,

in addition, may offer the possibility of the realization of a

class of ultra-broadband components from the nature of

nonuniformity. Therefore, it would be highly desirable to

investigate coupled nonuniform transmission lines as dis-

tributed network elements.

The work described in this paper is presented in the fol-

lowing manner: in Section II an improved method of

analysis of coupled nonuniform transmission lines is pre-

sented, which allows the four-port matrix parameters of such

coupled transmission lines to be obtained in a very concise

manner. Remarkably simple formulas for various four-port

matrix representations are derived. In Section III, among

numerous applications of coupled nonuniform transmission
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lines, the folded all-pass network and the coupled nonuni-

form transmission-line directional coupler are treated in

detail. Theory of the preceding section is applied and the

equivalent circuit representations of these two networks are

presented, which may reduce the syntheses of these networks

to those of single nonuniform transmission lines. In Section

IV, the phase and delay characteristics of the coupled non-

uniform transmission-line folded all-pass networks, and the

coupling characteristics of the coupled nonuniform trans-

mission-line directional couplers are investigated, taking the

coupled exponential line as the network element.

II. MATRIX REPRESENTATIONSOF COUPLED NONUNIFORM
TRANSMISSIONLINES

The coupled nonuniform transmission line to be con-

sidered in this paper is a symmetrical two-conductor line

with common return, in which the line parameters vary

along the longitudinal direction, that is, along the direction

of propagation of electromagnetic waves. A convenient way

to describe the behavior of such a coupled transmission line

is by means of the various matrix representations; i.e., im-

pedance matrix, admittance matrix, etc., which will be

derived in this section. One derivation method for the ma-

trix representation of coupled nonuniform transmission

lines utilizes coupled uniform transmission-line techniques.

For example, transfer matrix may be derived by:

1)

2)

3)

Dividing the coupled nonuniform transmission line of

finite length into n elementary sections of identical

length Al.

Multiplying the transfer matrices of n elementary sec-

tions, each of which is approximated by the coupled

uniform transmission line section.

Taking the limit for n-+ ~ and Al~O, keeping the total

length constant.

This method, however, is tedious to apply and, furthermore,

the transformation from the transfer matrix to the other

matrix representations becomes intractable. Hence, this

paper employs an alternative method which seems to have

the advantage of greater simplicity.

Let us consider now the coupled nonuniform transmission-

Iine four-port composed of two conductors of identical

length 1, having reflection symmetry to one another about a

longitudinal axis, as illustrated in Fig. 1. The derivation

method for the matrix representations adopted consists of
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the usual procedure of reducing the problem of a four-port where the two-port admittance matrices of the even and

network to that of a two-port network by taking advantage odd mode half sections of the complete four-port network

of the symmetry about the plane T-T’. The behavior of in Fig. 1 are assumed such that

such a coupled nonuniform transmission-line four-port can

be completely described by superposition of the two funda- P
[Y{:] = [fllf f~:])

mental modes, so-called even and odd modes [2], [3]. In
(5)

21 0
the even mode, for which the respective voltages and cur-

rents on the two conductors are equal and of the same sign, where, from the reciprocity condition,

the plane of symmetry may be replaced by a magnetic wall,
P@

while in the odd mode, for which the respective voltages and
Ylz 0 = Y21 . (6)

currents are equal but of opposite sign, this may be replaced It may be more convenient in some cases to use the transfer

by an electric wall at zero potential. Throughout this paper, matrix which is derived in an analogous manner as

v,

[1 r

Ae+Ao A.–A. B.–B, B.+B. V,

V2 __ 1[ 11Ae– Ao A,+A. B,+Bo Be– Bo V$ /*\

11 1I, – 2 C.–c. C. +(70

12 ce+co C.–c.

De+Do De–Do

J“L \

–14 ‘
(!)

De – Do7De + Do –13

sub- or superscripts e and o refer to the even and odd modes,

respectively.

We shall first derive the impedance matrix, for which the

fundamental modes are excited by the sets of constant cur-

rent generators as shown in Fig. 2(a) for even mode and

2(b) for odd mode. Any port condition can be expressed as

a linear combination of these two modes of excitation. Let

the two-port impedance matrices of the even and odd mode

half sections of the complete four-port network in Fig. 1

be, writing even and odd mode cases together,l

(1)

where, from the reciprocity condition,

where the subscripts 1 and 2 denote Ends I and II, respec-

tively (see Fig. 1). By superposition, the impedance matrix

of the coupled nonuniform transmission-line four-port in

Fig. 1 is found to be

where the two-port transfer matrices of the even and odd

mode half sections are assumed such that

[1
A{g B{g

‘%1= cc 1)~ ‘

where, from the reciprocity condition,

(8)

(9)

Equations (3), (4), and (7) are remarkably compact formulas

which indicate that the matrix representations of a sym-

metrical coupled nonuniform transmission-line four-port

may be readily derived if the two-port matrix parameters of

the even and odd mode half sections of the complete four-

port network are known. The method presented is directed

toward the derivation of the matrix representations of coupled

nonuniform transmission lines; however, (3), (4), and (7)

may be applicable to general symmetrical four-port networks

including not only distributed constant networks but also

lumped constant ones.

VI

[1[
211’ + Zll” Z1l’ – Zlf Z12”– Z12” z& + Z12” II

v,

N

1 Z1l’ – Zll” Zll” + z& z& + Z12” Zrf – Z*2” 12— (3)
v, – I z,,” – 221” Z2,’ + z,,” Z22’+ Zxf 222’– Z22” 13 “

V4 221’ + Z21” Z21’ – 221” 222”– 22,” Z22’+ 222” 14

On the other hand, if the fundamental modes are excited by

the constant voltage generators instead of current generators,

manipulation similar to the case of the impedance matrix

yields the admittance matrix as

II

[1 [
Ylf+Y1l’ Y@ – Yl,’ Y& – Y& Y& + Y& VI

12 =_

1“[1

1 Yll” – Y1l’ Ylf + Y1l’ Y& + Y12” Y& – Y& V2

Is 2 Yzf — Y9J” Yzl” + Yale Y2f + Y2# Y22” — Y*f V3 ‘

141 Y’JI” + Y21’ Yzl” – 1721’ Y22” – Y22’ Y29” + Y22” V4

I Equation (1) indicates [Z’] and [Z”], simultaneously. Similar
representations will be often used in the latter part of this paper.

(4)
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Fig. 1. Coupled nonuniform transmission-line four-port.

,A I

- T’

(a) (b)

Fig. 2. Excitation of the fundamental modes by means of the constant current generators: (a) even mode, (b) odd mode.

(a) (b)

Fig. 3. Even and odd mode half-seetion single nonuniform transmission-line two-ports: (a) even mode, (b) odd mode.

It now remains to derive the two-port matrix representa-

tions of the two single nonuniform transmission lines shown

in Fig. 3(a) and 3(b), which correspond to the even and odd

mode half sections, respectively, of the coupled nonuniform

transmission-line four-port in Fig. 1. Assuming negligible

dissipation and TEM propagation for both even and odd

mode cases, the even and odd mode propagation constants

~{ ~identically reduce to

(lo)

where p is the phase constant and k is the wavelength. Then

the differential equations representing the line voltages v{ .(x)

and the line currents i{ .(x) for the even and odd mode h~lf-

section single nonuniform transmission lines are

mode characteristic impedances of the half-section single

nonuniform transmission line, both being functions of the

position x along the line only. Further differentiationof(11)

yields the linear second-order differential equations for the

even and odd mode line voltages

+ B’”v e(z) = o, (12)
{.

which may be solved using standard techniques if Z. ~e(x)

are known. Let p.(x) and q,(x) represent a pair of line&ly

independent solutions of (12) for even mode case, and,

similarly, let po(x) and qo(x) denote a pair of linearly inde-

pendent solutions of (12) for odd mode case. The general

solutions of (12) are given by

v 6(Z) = c1 .Vy@ + c2~”q@
{0 {0

(13)

: {i{:(x)] + jp {
where Cl . and C2 , are constants, and the line currents are

—-v Jz) = o, (11) {0 {0
z, .(x)

{0

{0 -1{
i .(x) = [cl{g”P’{@ + gz{g”qk)l, (14)

where Z,.(x) and Zo.(x) are, respectively, the even and odd j~ 020 ~(z)
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where the prime indicates differentiation with respect to x.

The use of (13) and (14) yields the two-port matrix repre-

sentations of the even and odd mode half sections of a

general coupled nonuniform transmission-line four-port in

Fig. 1, following the method of Dutta Roy [4],

(15)

where the m’s are

mlb = p’p(l) q $0) - q(l) ‘P @
WJ$= ~’((o) q’{:(l) - d{:(o)w’{:(l)

rd = P’{:(o)q Jo) - d{:(o)p {;(0)
77L41= p’;(l) g @ - !qg) P 1#)
m,{: = p’;(o) q @ - q’k(o) “P @

m,{: = p P(O) q {:(1) - g F(O) p $1). (18)
o 0 0 0

Also, from the nature of the linear second-order differential

equation, we get the following relationship:

P’{:(x) “~{:(~) – !2’{:($) “P {:(~) = ~on~tant
(19)

20 ,(X)
{.

Then it is easily proved that (15), (16), and (17) always satisfy

the corresponding reciprocity conditions; i.e., (2), (6), and

(9).

Substitution of (15), (16), and (17) in (3), (4), and (7),

respectively, yields the impedance, admittance, and transfer

matrices of a general coupled nonuniform transmission-line

four-port. No preferred matrix representation exists. The

matrix representation that is most convenient depends upon

the network configuration to be analyzed. It now remains

only whether or not (12) is solvable for the given types of

variation of the even and odd mode characteristic imped-

ances. Equation (12) is the linear second-order differential

equation for single nonuniform transmission lines which, so

far, have been investigated by a number of workers in the

field [1], [4]-[8]. For the given even and odd mode char-

acteristic impedance functions, the four-port matrix param-
eters of coupled nonuniform transmission lines can be
determined either by direct substitution in (3), (4), and (7),

if the two-port matrix parameters of the even and odd mode
half-section single nonuniform transmission lines are known,

or by the use of (3), (4), and (7) together with (15)–(17), if

the solutions of (12) are available.

Although the general solutions of (12) for completely

arbitrary Z,,(x) and ZOO(X) have never been accomplished,

all the existing solutions for single nonuniform transmission

lines are applicable to coupled nonuniform transmission

lines. In particular, two methods recently proposed are of

importance. One proposed by Berger [9] is a simple gen-

eralizing method which enables one to obtain the solutions

for single nonuniform transmission lines of various shapes

by utilizing those for the previously solved single nonuni-

form transmission lines. The other method described by

Protonotarios and Wing [10], although an approximate one,

is applicable to arbitrarily nonuniform transmission lines

and is extremely valuable in the case where the closed form

solutions are not possible or cannot be found easily.z Thus

we conclude that it is possible to form a coupled nonuniform

transmission line having two single nonuniform transmission

lines, for which the solutions of (12) are known, as the even

and odd mode half sections. It should be noted, however,

that, for the coupled two-conductor line with common re-

turn under consideration, physical realizability requires that

z,,(x) 2 zoo(x) (o~x~z). (20)

In the selection of the characteristic impedance functions,

(20) must be considered.

III. APPLICATIONS OF COUPLED NONUNIFORM

TRANSMISSIONLINES

There are a number of papers dealing with single nonuni-

form transmission lines. To date, however, application of

this type of transmission line has been limited, from its

nature, to a few classes of circuit components such as im-

pedance transformers, resonators, etc. In comparison with
such single nonuniform transmission lines, coupled non-

uniform transmission lines may have a wide variety of ap-

plications in UHF and microwave regions. For example,

when the pertinent port conditions are applied to the coupled

nonuniform transmission-line four-port, the resultant two-

port networks as in Fig. 4 may be used as distributed con-

stant filters which may have sharper cutoff and greatly ex-

tended rejection bandwidth than are obtainable with uniform

transmission lines, and it is possible to analyze their trans-

mission properties by the use of the matrix representations

presented in Section II, if the functional forms of the even

and odd mode characteristic impedances are given.

In this section, however, two other networks will be

treated in detail. These are the coupled nonuniform trans-

mission-line folded all-pass network and the coupled non-

uniform transmission-line directional coupler, both of which

possess peculiar characteristics not attainable by conven-

tional single nonuniform transmission lines. Throughout the

latter discussion, we treat such a coupled nonuniform trans-
mission line that satisfies the following condition:

206(%) zoo(z) = 1, (21)

1This method is direeted toward single nonuniform RC transmis-
sion lines; however, it can be easily extended to the case of lossless
single nonuniform transmission lines.
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Fig. 5. Coupled nonuniform transmission-line folded network.

~4+- I--o
I-7—

Fig. 4. Coupled nonuniform transmission-line filters.

where zO,(X) and zO,(X) are, respectively, the even and odd

mode characteristic impedances normalized to the terminat-

ing impedances. As will be shown later, under this condition,

the coupled nonuniform transmission-line folded network

becomes an all-pass network and the coupled nonuniform

transmission-line four-port terminated by unit impedances

behaves as a directional coupler with perfect input match

and infinite directivity at all frequencies.

It can be easily proved that, under the condition (21), the

even and odd mode half sections, shown in Fig. 3(a) and

3(b), respectively, of a coupled nonuniform transmission-line

four-port are mutually dual; that is,

A. = D., B, = C., C, = B., D. = A., (22)

where A{:, B{:, C{:, and D{; are the two-port transfer
matrix parameters of the even and odd mode half section

single nonuniform transmission lines.

A. Coupled Nonuniform Transmission-Line Folded All-Pass
Network

The coupled nonuniform transmission-line folded network

to be analyzed herein is the two-port network shown in Fig.

5, in which two ports at one end of the coupled nonuniform

transmission-line four-port are interconnected [2], [1 1];

ideally this connection should be of zero length. The folded

network using a coupled uniform transmission line is known

as the microwave C-section [12], [13]. We shall now investi-

gate the frequency behavior of the coupled nonuniform

transmission-line folded network under the condition (21).

If the even mode signals (++, ++) are applied at Ports 1

and 2, respectively, the plane of symmetry may be replaced

by a magnetic wall. Likewise, if the odd mode signals

(+;, – ~) are applied at Ports 1 and 2, the plane of sym-
metry may be replaced by an electric wall. In each case, the

problem reduces to that of a one-port network, and the

sum of these two cases is a single signal of unit amplitude in

Port 1. The resultant signals out of Ports 1 and 2 are

Al = (roe + rOo)/2

A2 = (1’O. – rO.)/2, (23)

where I’Oeand I’O. are the reflection coefficients for the even

and odd mode half-section single nonuniform transmission-

line one-ports, respectively. These are related to the open-

circuit impedance ZOPand short-circuit impedance z,b of

half the folded network by

.Z.P – 1 (A./CJ – 1
roe = ——

Zop+ 1 (A,/’CJ + 1

z,. – 1 (BO/DO) – 1
roo =

.z,h + 1 = (BO/DO) + 1 “
(24)

Substitution of (22) into (24) yields

roe = — roo. (25)

Then we get from (23) and (25)

AZ = roe. (26)

Thus, it is found that the coupled nonuniform transmission-

Iine folded network in Fig. 5 behaves as an all-pass network

under the condition (21), and the phase shift @through this

all-pass two-port network, after manipulation, is expressed as

@= COS-’ [Re(r’OJ]

[–

– 1 m,’
= 2 .t~n–l

1v’p(o).p “x ‘
(27)

where ml’ and mz’ are given by (18) and p(0) is the ratio of

the even to odd mode characteristic impedance at x= O.

That is,

p(o) = 2’0,(0)/20.(0) . (28)

It should be noted that, from the realizability condition (20),

p(o) > 1, (29)

or generally

P(z) = zoe(*)/zoo($) 2 1 (Oszs l). (30)

Equation (26) offers the equivalence of the coupled nonuni-

form transmission-line folded all-pass network and the
single nonuniform transmission-line resonator of character-

istic impedance zOJX) with the far end open circuited; that

is, the reflected wave of the open-circuited single nonuniform

transmission-line resonator corresponds to the transmitted

wave of the folded all-pass network (see Fig. 6). Making use

of this equivalence allows coupled nonuniform transmission-

line folded all-pass networks to be synthesized by means of

the methods now available for single nonuniform transmis-

sion-line resonators [14]–[1 6]. Thus, the problem of a

coupled transmission line reduces to that of a single trans-

mission line.
As long as we treat single nonuniform transmission lines,

all-pass properties cannot be realized; however, this can be
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Zoe (t , ZOO(x)
1

(a)

Fig. 6. Equivalence of a coupled nonuniform transmksion-line
folded all-pass network and a open-circuited single nonuniform
transmission-line resonator (O: phase shift).

done by the use of coupled nonuniform transmission lines

as described before. In particular, the folded network treated

in this section not only is an all-pass network but also

possesses such a peculiar phase or delay characteristic that

may be considered useful in many UHF and microwave

systems that require phase shaping or delay equalization.

Of course, the synthesis of coupled nonuniform transmis-

sion-line folded networks is complicated compared with the

case of coupled uniform transmission lines. However,

Youla’s synthesis method [16] for arbitrarily terminated

single nonuniform transmission lines is directly applicable

because of the analytical equivalence shown in Fig. 6, and

the peculiar properties not attainable by the stepped design

using conventional coupled uniform transmission lines may

be realized from its nonuniformity. The practical advantage

gained by the use of nonuniform transmission-line folded

networks is that the discontinuity effect of the physical

junctions between adjacent coupling sections is eliminated.

Coupled nonuniform transmission-line folded networks will

be compared with coupled uniform transmission-line folded

networks in Section IV.

B. Coupled Nonuniform Transmission-Line

Directional Couplers

Consider the coupled nonuniform transmission-line four-

port terminated by unit impedances at every port as shown

in Fig. 7. Its behavior may be analyzed by the method of

Reed and Wheeler [3]. When two signals of half amplitude

and in-phase are applied at Ports 1 and 2, the plane of

symmetry may be replaced by a magnetic wall, i.e., even
mode case. Similarly, when two signals of half amplitude

and out-of-phase are applied at Ports 1 and 2, the plane of

symmetry may be replaced by an electric wall, i.e., odd mode

‘:~:t
T–. —-—__

{

-
10, 0 x

{
if-l

Fig. 7. Coupled nonuniform transmission-line directional coupler.

case. In each case, the problem reduces to that of a two-

port network, and the sum of these two cases is a single

signal of unit amplitude applied to Port 1. The amplitude

and phase of the signals emerging from the four ports are

given by

A, = (r, + ro)/2

A2 = (r, – ro)/2

A, = (T, – 7’.)/2

A, = (I’. + To)/2, (31)

where I’. and I’o are the reflected waves, and T. and To are

the transmitted waves, for the even and odd mode half

section single nonuniform transmission-line two-port net-

works, respectively. These reflected and transmitted waves

can be related to the two-port transfer matrix parameters of

the even and odd mode half sections of the coupled nonuni-

form transmission-line four-port by

Noting that from (22) and (32),

r.=–ro

T, = T., (33)

we find

AI=O

AZ = r.

A,=O

A, = Te.. (34)

Equation (34) shows that, under the condition (21), the

coupled nonuniform transmission-line four-port terminated

by unit impedances behaves as a directional coupler perfectly

matched and isolated at all frequencies and, in addition, if

the functional forms of the even and odd mode characteristic

impedances are given, the coupling to Port 2 may be found

from the following equation

ml’ — jp .mbe. 2.,(1) – m2’/jb. 20.(0) – m6’” d) /zue(o)
A,=—

ml” – jfl .frm’, 20.(1) + m#/j@. ZO,(oj + ~5’” ‘@(z) /zo@(@’
(35)
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where the m’s are given by (18). Equation (34) also offers

the equivalence [17] (see Fig. 8) of the coupled nonuniform

transmission-line directional coupler and the single nonuni-

form transmission-line section of characteristic impedance

zO.(X). That is, the reflected wave of the single nonuniform

transmission line corresponds to the backward-coupled wave

of the directional coupler, and the transmitted wave of the

single nonuniform transmission line corresponds to the

forward-coupled wave of the directional coupler. The use of

this equivalence reduces the synthesis of coupled nonuniform

transmission-line directional couplers to that of single non-

uniform transmission lines. Let us now consider this prob-

lem briefly. The coupling to Port 2 of the asymmetrical

n-section coupled uniform transmission-line directional cou-

pler having Chebyshev response is [18 ],

c%WJ.os~ /coS@)

] A2 \2uni~om=
‘-\ nl n}

,+,2-h2.T.2(cos:/.os;)’ ‘3’)

where T. is the Chebyshev polynomial of the first kind of

degree n, c, and h are constants, BO is the phase constant at

the lower equal-ripple band-edge frequency, and 1 is the

total length of the coupler. Allowing the number of sections

to increase indefinitely for a fixed overall length, the asym-

metrical coupled nonuniform transmission-line Chebyshev

coupler results, for which the coupling is

I A2 I’nonuniform= ‘2 - ‘2”c0s2(z<B2 - ’02) J (37’)
1 + c’ – h’ oCOS2(1</32 – PO’)

since [19],

‘imTn(cOs:/cOs?) =cOs’’d’2-@02’, ’38)n+.

which is the limiting form of the Chebyshev polynomial as

its degree increases without limit. Thus, the synthesis of the

coupled nonuniform transmission-line Chebyshev coupler

reduces to that of the single nonuniform transmission-line

section having reflection characteristic given by (37). For

loose couplers, synthesis may be performed by the usual

Fourier transform method for tapered impedance matching

sections [19] –[2 1]; however, for tight couplers, this method

is not directly applicable, and the higher-order theory [16],
[22] must be used.

If we select a variation of the even and odd mode char-

acteristic impedances of the types

{0 {0
20 ,(Z) = 20 .(1 — $), (39)

then a symmetrical coupled nonuniform transmission-line

directional coupler [23] can be obtained, for which the phase

difference between the two outputs at Ports 2 and 4 is 90-

degrees at all frequencies.s It is this property that makes

8Although the details of the synthesisprocedure have not yet been
presented, such symmetrical nonuniform transmission-line couplers
have recently been treated by Tresselt (231.

(a)

l—
Zoe (x)

I

lrl’—
—1–lrl’

—x1!1 o lsl
(b)

Fig. 8. Equivalence of a coupled nonuniform transmission-line direc-
tional coupler and a single nonuniform transmission line.

symmetrical couplers [24], [25] of importance.

Comparing with familiar multi-section coupled uniform

transmission-line couplers, both symmetrical and asym-

metrical coupled nonuniform transmission-line couplers

possess no discontinuity in the coupling region, and there-

fore should be capable of providing higher isolation and

better input match. Furthermore, they offer the possibility

of the realization of ultra-broadband couplers because of

their nonuniformities. If there need not be any particular

phase relationship between the outputs, asymmetrical

couplers seem to be superior to symmetrical ones since the

former offers the smaller size. However, as in the case of

asymmetrical uniform transmission-line couplers [18], a

major practical disadvantage of symmetrical nonuniform

transmission-line couplers is the presence of the abrupt dis-

continuity at one of the two ends, which may cause con-

siderable degradation of performance.

IV. COUPLED EXPONENTIAL LINE

In Sections II and III, we have considered the general

coupled nonuniform transmission line, not assuming any

specific type of variation of the characteristic impedances.

For the purpose of illustration, let us now investigate the

properties of the coupled nonuniform transmission-line

networks, treated in the previous section, using the coupled
exponential line as the network element, of which even and

odd mode characteristic impedances (normalized) vary ex-

ponentially along the longitudinal direction; that is,

206(z) = 2.,0. exp (Pz)

ZOO(Z)= 2000.exp (–PZ) (0s2s 1), (40)

where z e are the even and odd mode characteristic im-
0{0

pedance levels of the line at x= O, and, from the condition

(21), are related by

20.0. Zoo(l = 1. (41)

The rate of taper p in (40) maybe positive or negative; how-
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Fig. 9. Limitation on parameters, p(0) and pl, for the coupled
exponential line defined by (40) and (41).

ever, it is necessary, so as to satisfy the realizability condition

(20), to choose the parameters ~ and p (0)(= zO,(O)/zOO(O))so

that

p(o) 21 (w ~ ())

P(O) 2 exp (– 2M1) (p < o). (42)

The shaded region in Fig. 9 represents the range of the

parameters for which the coupled exponential line is realized.

For convenience of later discussion, the two-port transfer

matrix parameters of the even and odd mode half sections

of the coupled exponential line defined by (40) and (41) will

now be derived.

1
Ae= D.= —sin@{p + q.cot@]

P-q

20.0,P
B.= C.=j —— sin (3

q

1
C.= Bc. =j sin @

.zoeo.P.q

D, = AO = ~sin@{–p+q. cot@},
q

where,

()P=exp ~

(43)

(44)

t

1
—pe=l.o ,;:5”:27/—.—p =0

----- Pe=–1.o
‘/ 4

5.0 /;/ ‘

/,

,/,/ ,/

1.
-2
S!40
z

—p (o) = 5

m p (o)= 10
~
% 3.0

P(o)=l

;
0.
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I
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Fig. 10. Phasecharacteristics of the coupled exponential-
line folded all-pass networks.

A. Coupled Exponential-Line Folded All-Pass Networks

The phase shift @ through the coupled exponential line

folded all-pass network as in Fig. 5 is

[
$ = 2.tan-l _

1

1UP(O (P+ q“ cot @) “
(45)

Curves are plotted in Fig. 10, showing @against 61. Inspec-

tion of Fig. 10 shows that this network possesses peculiar

phase characteristics. Also, in Fig. 10, the o–pi curves with

N= O, in fact, correspond to those of coupled unforrn
transmission-line folded all-pass networks. It should be

noted that, as the rate of taper p increases from the negative

value through zero to the positive one, the @—@ curve for

the coupled exponential-line folded all-pass network is

shifted from the left to the right for a constant length of the

line, and the variation in maximum slope of the @–131curve

is accomplished by varying P(O), i.e., the ratio of even to odd

mode characteristic impedance at x= O. This is the property

that makes coupled exponential-line (or generally coupled

nonuniform transmission line) folded networks so interest-

ing and useful. This shifting property cannot be obtained by

using coupled uniform line folded networks for constant

length of the line, since the ~–pl curves for ~ = O in Fig. 10

pass through the point (L31=7r/2, ~= r) independent of p(0).
In order to shift the $–p] curves with uniform transmission

lines, cascaded folded networks [13] must be employed.

However, this means the degradation of performance be-

cause of its junction effect and furthermore the size of the

whole network becomes larger.

Next we shall consider the delay characteristics of

coupled exponential-line folded all-pass networks. The delay

versus frequency function is by definition,
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Fig. 11. Delay characteristics of the coupled exponential-
Iine folded all-pass networks (pi= 1.5).

d+
r=—,

du
(46)

where u is the angular frequency. Let the normalized delay

function ,* be defined as

(47)

Here TO is the delay produced when TEM wave propagates

along a single unfoim transmission line of length 21 (twice

the length of the folded network), and is given by

(48)

where v is the velocity of propagation of TEM wave. Then

we get from (45)–(48)

Delay characteristics of the coupled exponential-line folded

all-pass networks are illustrated in Fig. 11 for pl= 1.5, where

the dotted line shows (48); that is, delay obtained by the

single uniform transmission line of length 21. Inspection of

Fig. 11 shows that, by using the folded network, larger delay

can be obtained at the frequencies near the peak position

than is obtainable with the single uniform delay line of the

same overall length. Variation in peak height is accomplished

by varying p(0), and variation in peak position by varying

the rate of taper. Therefore, if the proper selection of the
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Fig. 12. Cascadedtwo-section coupled uniform trans-
mission-line folded all-pass network.

functional forms of the characteristic impedances and the

parameters is made, folded all-pass netw&ks may be used

as delay equalizers for various applications, e.g., for use in

wideband PCM transmission [26]. The main advantage

gained by the use of the folded equalizers is that there is no

need of a circulator which is necessary in order to separate

the input and output waves for the usual reflection type

delay equalizers.4

If we connect in tandem folded networks with the same

peak height but slightly different peak positions, then it is

possible to obtain an approximately flat delay response,

and the overall network may be used as a constant delay

network. In comparison with the usual single uniform delay

line, the folded delay network becomes extremely compact

because of the folding process and larger delay near the peak

position.

Taking the coupled exponential line as representative of

coupled nonuniform transmission lines, let us now compare

coupled nonuniform transmission-line folded networks with

uniform ones. For the coupled uniform transmission-line

folded network, the peak position of the delay character-

istic is fixed at P1= rr/2, since its one parameter p (the ratio

of even to odd mode characteristic impedance) permits only

the variation in peak height; the coupled exponential-line

folded network, on the other hand, permits the variation

in both peak position and peak height because of its two

parameters ~ and P(O). As a particularly simple example,

consider the design of the delay network having maximum

delay at~= 1000 MHz (k= 30 cm). If we use a coupled uni-

form transmission-line folded network, the required length

is 7.5 cm. On the other hand, if we choose the coupled ex-

ponential-line folded network with negative ~,s having peak

position at, for example, P1= ~r, the required length is 5.6

cm. Thus, a reduction in length is realized. With uniform
transmission lines, variation in both peak height and peak

position is accomplished if we employ the cascaded two-

section folded network having two parameters as in Fig. 12

4It is interesting to note the relation of the reflection type equalizer
to the single transmission-line equivalent network of the folded
equalizer shown in Fig. 6(b). In the design of the folded equalizer, syn-
thesis may be performed by the method for the reflection type equal-
izers, but it is realized in the form of a folded network which enablesthe
designer to avoid the use of a circulator.

sSince the (group) delay is proportional to the slope of the @—@
curve from its definition, it is seen from Fig. 10 that the coupled expo-
nential-line folded network with positive p produces maximum delay
at (31(>7r/2), whereas that with negative P produces maximum delay at
(3[(<7r/2).
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(see Steenaart [26], Fig. 5). However, as previously described, coupled uniform transmission-line couplers, asymmetrical
the discontinuity effect may degrade the performance and coupled exponential-line couplers possess the high-pass char-
the size becomes larger. Of course, generally speaking, the acteristics. Thus, the spurious response unavoidable with
previous discussion seems insufficient to be conclusive since cascaded uniform transmission-line couplers is eliminated.
only the coupled exponential line is treated in this paper; The steps required to design the asymmetrical coupled
however, even from such a simple example, it is seen that exponential-line couplers may be summarized as follows:
the coupled nonuniform transmission-line folded networks

1) From the desired value of mean coupling, C(dB), ob-
are worthy of mention.

tain I.J by the use of (54).

B. Coupled Exponential-Line Directional Couplers 2) Using Fig. 13, determine the total length of the direc-

Coupling to Port 2 of the asymmetrical coupled ex- tional coupler from the values of the allowable coupling

ponential-line directional coupler, as shown in Fig. 7, is deviation and the required lower band-edge frequency.

derived from (32), (34), and (43) as 3) Find the rate of taper P.

1

{

/.L1 ()
–q. cot@. sinh I+p”cosh I +j

“z} (’%Y
A, = J..

{ }

1
q.cot@. cosh~– p.sinh~ +j

/ -[1~’

where k(l/2) is the coupling factor at x = 1/2 and is defined by

(,) “(-3-2’(2
lc7=

‘42+’0.(3 ‘ ’51)
or generally the coupling factor is

z“.(z) — zoo(z)

k(z) = - —
zu, (.r) + ZOO(X)

Let us now consider the special

which (50) reduces to

(Oszs t). (52)

case where k(0) = O, for

V’-’’(I)

(50)

It should be noted that the high-pass characteristic of the

asymmetrical coupled exponential-line directional couplers

is based on the end condition k(0)= O. As long as conventional

coupled line configurations are employed, it is impossible to

realize this condition which means that the coupled lines

must be infinitely far apart. However, the use of the slit-

coupled configurations shown in Fig. 14 allows this condi-

tion to be realized with reasonable coupled line spacing, for

which exact design equations have been given by the present

authors.b By varying the slit width, both configurations in

Fig. 14 permit smooth variation in coupling with constant

strip spacing and thus these are the suitable configurations

for coupled nonuniform transmission lines. In the uniform

or nonuniform transmission-line directional couplers using

.7\ slit-coupled configurations, in order to avoid undesirable

{
–q. cot@ + p.coth:} +j”l

A,= ‘
=J

{ }

. (53)

q.cot@. coth#–p +j. coth$

As the frequency tends to infinity, the amplitude of A, ap-

proaches constant. This asymptotic value corresponds to the

mean coupling, C (dB), of the asymmetrical coupled ex-

ponential-line directional coupler; that is,

c = jii 201W1O ,:21

pl
= 20. log lo coth ; . (54)

Curves are plotted in Fig. 13, showing coupling character-

istics for several mean coupling values. It can be seen that,

in comparison with the bandpass characteristics of the usual

symmetrical [24], [25] or asymmetrical [18] multi-section

coupling, the slit ~idth is set equal to zero in the terminating

region. Therefore, it is found that the end condition k(0)= O

for the asymmetrical coupled exponential-line directional

couplers can be easily realized by using the slit-coupled

configurations. 7 In other words, this condition would tend

to permit the smooth transition from the terminating region

to the coupling region.

Theoretically, asymmetrical coupled exponential-line

directional couplers possess excellent characteristics; how-

ever, as previously described, a practical disadvantage of

such couplers is the presence of the abrupt discontinuity at

one end, as in the case of asymmetrical multi-section coupled

g S. Yamamoto, T. Azakami, and K. Itakura, “Slit-coupled strip
transmission lines,” IEEE Trans. on Microwave Theory and Techniques,
vol. MTT-14, pp. 542–553, November 1966.

7 It should be also emphasized that the slit-coupled configurations
are available for the realization of the folded networks having decreas-
ing p(x) with increasing x (for example, coupled exponential line with
negative P), since they permit the variation in coupling with constant
coupled line spacing, for which conventional coupled line configura-
tions are not suitable.
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Fig. 13. Coupling characteristics of the asymmetrical coupled exponential-line directional couplers (k(0) = O).
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Fig. 14. Cross-sectional views of the slit-coupled strip-line
configurations: (a) parallel case,(b) perpendicular case.
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Fig. 15. Two-section symmetrical coupled nonuniform
transmission-line directional coupler.

1 , I , J
o 10 2.0 3.0 4,0 50

Be (tad,..)

Fig. 16, Coupling characteristic of the two-section symmetrical
coupled exponential-line directional coupler (k(0) = O, pl= 1.5).

uniform transmission-line couplers [18]. The use of sym-

metrical couplers such as those described by Tresselt [23]

allows such a discontinuity to be avoided, since the strongest

coupling region is in the center and not at one end; how-

ever, a high-pass characteristic is then not attainable. If we

connect two identical asymmetrical coupled exponential-line

couplers in cascade as in Fig. 15, the symmetrical coupler

results; however, calculation shows that such a simple

symmetrical coupler possesses poor bandpass characteristic

not sufficient for most applications (see Fig. 16). Therefore

we find that, in order to obtain the characteristic impedance

functions giving broadband symmetrical coupled nonuni-

form trans-miss~on-line directional couplers, synthesis must

be performed as was done by Tresselt.

V. CONCLUSIONS

Coupled nonuniform transmission lines have been shown

to be useful distributed network elements. We have seen

that it is possible to describe the behavior of coupled non-

uniform transmission lines in a very concise and compact

way so that matrix parameters may be derived by solving

linear second-order differential equations for more conven-
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tional single nonuniform transmission lines. Various matrix

representations of a general coupled nonuniform transmis-

sion line have been presented, each of which may serve as

a basis for the analysis and design of coupled nonuniform

transmission-line networks. As specific applications, the

coupled nonuniform transmission-line folded all-pass net-

works and the coupled nonuniform transmission-line direc-

tional couplers have been treated in detail, and useful

equivalences have been presented, which allow the syntheses

of these networks to be performed by using single nonuni-

form transmission-line techniques. In addition, the proper-

ties of these two networks using the coupled exponential line

have been investigated.
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